Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hacali Necefoglu,^a William Clegg^b* and Andrew J. Scott^b

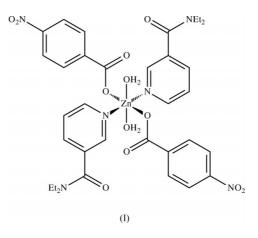
^aDepartment of Chemistry, Faculty of Science and Letters, Kafkas University, 36100 Kars, Turkey, and ^bDepartment of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England

Correspondence e-mail: w.clegg@ncl.ac.uk

Key indicators

Single-crystal X-ray study T = 160 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.026 wR factor = 0.068 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Diaquabis(*N*,*N*-diethylnicotinamide)bis(4-nitrobenzoato)zinc(II)

The title compound, $[Zn(C_7H_4NO_4)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$, crystallizes as centrosymmetric mononuclear molecules with octahedrally coordinated zinc, all pairs of equivalent ligands being mutually *trans*. Intramolecular hydrogen bonding links each aqua ligand with an uncoordinated carboxylate O atom, and intermolecular hydrogen bonding between aqua ligands and the carbonyl O atoms of *N*,*N*-diethylnicotinamide ligands link the molecules together into chains.

Received 11 September 2001 Accepted 13 September 2001 Online 29 September 2001

Comment

The title compound, (I), was prepared as part of a series of studies of the coordination chemistry of the ligand N,N-diethylnicotinamide (DENA). It has a molecular structure (Fig. 1) very similar to that of the corresponding complex in which 2-hydroxybenzoate (salicylate) replaces 4-nitrobenzoate, reported in a parallel publication (Necefoglu *et al.*, 2001). Coordination of zinc is close to regular octahedral, with all pairs of equivalent ligands mutually *trans* across a crystallographic inversion centre.

Each aqua ligand is involved as donor in two hydrogen bonds. One of these is intramolecular, to an uncoordinated carboxylate O atom, lengthening the C=O nominal double bond to almost the same as C-O for the coordinated O atom. The other is intermolecular, linking the molecules together in chains along the *a* axis.

Experimental

The title compound was prepared by the reaction of 4.34 g (0.01 mol) of $[\text{Zn}(\text{OH}_2)_2(4-\text{O}_2\text{NC}_6\text{H}_4\text{COO})_2]$ and 2.56 g (0.02 mol) of diethylnicotinamide in 100 ml water. The solution was filtered and set aside for crystallization at ambient temperature for a few days. Suitable colourless crystals were obtained.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Z = 1

 $D_{\rm r} = 1.436 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 36

Mo $K\alpha$ radiation

reflections

 $\theta = 10.7 - 12.5^{\circ}$

 $\mu = 0.74 \text{ mm}^{-1}$

T = 160 (2) K

 $R_{\rm int} = 0.020$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -8 \rightarrow 8$

 $\begin{array}{l} k = -10 \rightarrow 10 \\ l = -19 \rightarrow 19 \end{array}$

5 standard reflections

frequency: 60 min

intensity decay: 1%

 $w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.4095P]

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

 $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Block, colourless

 $0.42 \times 0.27 \times 0.19 \text{ mm}$

2889 reflections with $I > 2\sigma(I)$

Crystal data

$$\begin{split} & [Zn(C_7H_4NO_4)_2(C_{10}H_{14}N_2O)_{2^-} \\ & (H_2O)_2] \\ & M_r = 790.09 \\ & Triclinic, PI \\ & a = 7.211 (3) Å \\ & b = 8.588 (4) Å \\ & c = 16.515 (7) Å \\ & \alpha = 96.00 (2)^\circ \\ & \beta = 100.79 (2)^\circ \\ & \gamma = 112.09 (3)^\circ \\ & V = 913.6 (7) Å^3 \end{split}$$

Data collection

Stoe–Siemens four-circle diffractometer ω/θ scans with on-line profile fitting (Clegg, 1981) Absorption correction: ψ scan (*XPREP*; Sheldrick, 1997) $T_{\min} = 0.821, T_{\max} = 0.959$ 6298 measured reflections 3214 independent reflections

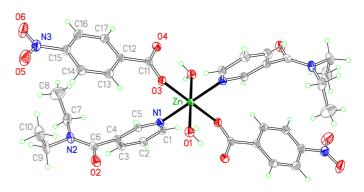
Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.068$ S = 1.103214 reflections 251 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

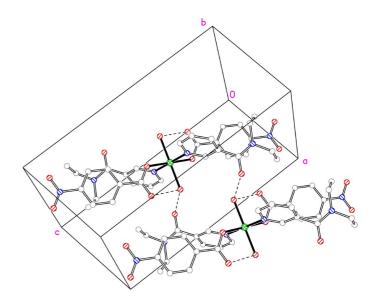
Selected geometric parameters (Å, °).

Zn-O1	2.1373 (15)	C11-O3	1.264 (2)
Zn-O3	2.1149 (14)	C11-O4	1.255 (2)
Zn-N1	2.1527 (16)		
O3-Zn-O1	87.54 (6)	O1-Zn-N1	86.71 (6)
O3-Zn-N1	88.54 (6)	C11-O3-Zn	125.41 (11)


Table 2

Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1A \cdots O4^{i} \\ O1 - H1B \cdots O2^{ii} \end{array}$	0.86 (3)	1.82 (3)	2.659 (2)	164 (3)
	0.81 (3)	1.95 (3)	2.765 (2)	173 (2)


Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z.

H atoms were placed geometrically and refined with a riding model (including free rotation about C–C bonds), and with $U_{\rm iso}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\rm eq}$ of the carrier atom, except for aqua ligand H atoms, which were refined freely with individual $U_{\rm iso}$.

Figure 1

The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.

Figure 2

View of two molecules and the unit-cell outline, showing intramolecular and intermolecular hydrogen bonding as dashed lines.

Data collection: *DIF*4 (Stoe & Cie, 1988); cell refinement: *DIF*4; data reduction: local programs; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

We thank EPSRC for financial support.

References

Clegg, W. (1981). Acta Cryst. A37, 22-28.

Necefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m462–m464. Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stoe & Cie (1988). DIF4. Version 7.04. Stoe & Cie, Darmstadt, Germany.